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Abstract

We build a differential calculus for subalgebras of the Moyal algebr&‘bstarting from a redun-
dant differential calculus on the Moyal algebra, which is suitable for reduction. In some cases we
find a frame of one-forms which allows to realize the complex of forms as a tensor product of the
noncommutative subalgebras with the external algetira
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1. Introduction

In this paper we address the problem of building a differential calculus on a wide class of
noncommutative algebras introducedih. Those are inequivalent infinite-dimensiosnal
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algebras in one-to-one correspondence with subalgebras of the Moyal alg&randrich

all share the same commutative limit, namely the algebra of functiori&®ofollowing

some ideas of Segal contained®}, where he defines Quantized Differential Calculus

for the algebra of operators of quantum mechanics, we build a differential calculus based
on the existence of a sufficient number of derivations. The algebras we are interested in
are subalgebras of a bigger one, therefore, in our approach, an important point is how to
infer a differential calculus for subalgebras from a given differential calculus on the big
algebra. The problem is nontrivial in the noncommutative case, and of interest also in more
general situations where we have morphisms between two algdébBsvhich could be, for
example, the noncommutative analogues of the source and target space of field theories. In
the commutative case, givéh N, a pair of differentiable manifolds with somge M — N,

we know that the exterior derivative on the two spaces is connected by a pull-back:

¢*(dn f) = dud*(f). (1.1)

where f € F(N) while ¢*(f) € F(M). But, if the commutative algebras of functions
F(M), F(N) are replaced by the noncommutative algebdads with somey : B — A

the relation between the differential calculi on the two algebras is not obvious a priori.
Can we use the differential calculus ghto define a differential calculus dfi as in Eq.

(1.1)? As we shall see, this is in general not possible, essentially because derivations in the
noncommutative case are naamodule, namely we cannot multiply them by elements of

A so that they remain derivations. This will affect the exterior derivafida other words,

if we are given a basis of one-forms and an algebra of derivations for the noncommutative
algebra, we may still write asd = 6 X, but it is not true in general that we can perform

a change of bases both for one-forms and derivations such that the same exterior derivative
d is also equal to som&'Y,. Indeed, once we have performed the change of basis for the
one-forms (which we can do, the one-forms being-anodule) we cannot rearrange the
derivations in order that they stay derivations, apart from multiplying them by numbers or
elements in the centre of. The main point of the paper is therefore the construction of

a differential calculus for subalgebras of the Moyal algebrakdnMy, starting from the
definition of a differential calculus on the Moyal algebra which is suitable to be reduced.

2. Differential calculus for (noncommutative) associative algebras

For an associative algebra a differential calculus can always be defined algebraically,
once a Lie algebra of derivations, is given (see for examplg,3]). A one-forme is a
linear map fromL to A. An exterior derivativel is defined as

da(X, Y) = p(X)(a(Y)) — p(Y)(a(X)) — a([X, Y]). (2.1)

If p: £L — Der(A) is a Lie algebra homomorphism, théf = d o d is zero. Higher forms

are defined as skew-symmetric multilinear maps fibto the associative algebyé Thus,

to define a differential calculus on a noncommutative algebra, we need to choose a set of
derivations, that have to be independent and sufficient, and a representafiom of. (A

set of derivations is said to be sufficient when the only elements which are annihilated by
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all of them are in the centre of the algebra.) That is, we n&edsuch that

p(X)(f*g) = (X)) xg+ f*(p(X)g), XeL, fgeA, (2.2)

wherex is the noncommutative product . Assuming such structures are given, the first
step for the construction of a differential calculus is the identification of zero forms with
the algebra itself

0= A (2.3)
Then the exterior derivative is implicitly defined by

df (X) = p(X) [ (2.4)
It automatically verifies the Leibnitz rule becauysX), X € £ arex-derivations

d(f * g)(X) = (o(X) f) x g + f * (o(X)g), (2.5)
moreover,

d’> =0, (2.6)

because the-derivationsp(X), X € £ close a Lie algebra. The second step consists in
defining2! as a left4A module that is

gd(X) = g * (p(X) f)- (2.7)

Analogously, we can define arigdtmodule. Because of noncommutativity they are not the
same, but we can always express one in terms of the other. Thus, we consider left modules
from now on. To construc2? we use(2.1) and (2.6)We have

df o dg(Xu, Xo) = df (X,.)  df (X.) — df (Xo) % df (X ), (2.8)
where we have indicated withithe product of forms. Because of noncommutativity:
df o dg # —dg o df (2.9)

In a similar way ta2*, £22 is defined as a left module with respect to themultiplication:
fdg o dh(X,, X)) = f*dg(X,) xdh(X)) — f*dg(X,) * dh(X,). (2.10)

Higher 27 are built along the lines of the commutative case.

3. A differential calculus for the Moyal algebra

The simplest and mostly studied noncommutative algebra is the Moyal algebra. This
is a deformation of the algebra of functions BA*, (F(R%), -) into the noncommutative
algebra (M, xg) wherexy is the Moyal producf4,5] andd the noncommutativity parameter.
The zero-th order i yields back the ordinary commutative product, while the first order
is the Poisson bracket which we assume for simplicity the canonical one. Different (nonde-
generate) Moyal products @&f are in principle associated with an invertible antisymmetric
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matrix ©;; which, with a change of coordinates, can be expressed in the canonical form:

0O 0 -6, O
0O O 0 -6

O = 3.1
/p 0 O 0 @1

0 6o 0 O

with +6; the eigenvalues of). A simple rescaling can then equatge= 6, = 6. In this
setting, the Moyal product x4 g of two Schwartz functiong. g onRR* is defined by

Fros) = [ [ L0000 Ot du0) i () (32)

whereu := (g, p); 6 is a positive real parametetiu’(v) := (70)~*du(v). The integral
kernelL? is given by

o
Lo(u, v, w) = exp(el(qu + vJw + wJu)) , (3.3)

whereJ denotes the antisymmetric matrix:

=0 " 3.4
S \-12 0 (34)

with 1, the 2x 2 identity matrix. What is properly defined as the Moyal algebra is
My = ML (R}) N Mr(RS) where M (R3), the left multiplier algebra, is defined as the
subspace of tempered distributions that give rise to Schwartz functions when left multiplied
by Schwartz functions; the right multiplier aIgebMR(Rg) is analogously defined. For
more details we refer to the appendiXij and references therein. In the present article we
shall think of My as the algebra of-polynomial functions iry;, p;, properly completed.
Its commutative limit,F(R?), is the commutative multiplier algeb@y,(R*), the algebra of
smooth functions of polynomial growth d@&f in all derivativeg6]. To define a differential
calculus in the constructive way described in the previous section we need derivations. The
My are normal spaces of distributions, and all their derivations are inner. Therefore, we
turn our attention to groups of automorphisms\df. A relevant one is the inhomogeneous
symplectic group ISp(4R), constituted by translations and real symplectic transformations
of R*.1 As we will see below in more detail, it induces derivations both for the commutative
algebraF(R*) and the Moyal algebra,. In facts its Lie algebra is the maximal algebra
of derivations with this property. Moreover, although it is not minimal (the subalgebra of
translations would suffice) it generates the whole algebra of polynomial functions, once we
represent its generators as quadratic-linear functioi®é'in

The group Sp(4R) consists of elementsfor which g’ J¢ = J; this implies for the Lie
algebra generators that’J + JM = 0, with

[Ma. Mp] = Cg,Mc (3.5
1 Note however that smaller Moyal algebras can be chosen, such that the inhomogeneous symplectic algebra

acts as outer derivations on thé@j. The choice of such big algebras in the present paper is motivated by the fact
that they contain all polynomials.
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andC¢, the structure constants of the symplectic algebra. The Lie algebra is realized in
terms of vector fields oR* by
d
To the symmetric matriceB, = —JM, it is associated a set of quadratic functionsish
1 t
Ya = éu Bau. 3.7)

They define a realization of the symplectic algebra as a Poisson algebra with respect to the
canonical Poisson brackgf;, p;} = é;;:

{Va> yb} = CgpYe- (3.8)

The inhomogeneous sector of the Lie algebramf R) is represented by linear functions.
Therefore, the whole inhomogeneous symplectic algekpéd R), may be realized as a
Poisson algebra dR* with generators a set of quadratic-linear functiong,@f. A possible
choice for the generators is

1 1 1

n= g2+ pip2).  y2= 5@z —qz2p1). 3= Z(Q% +pi— a5 — pd),
1 1

V4 = Zl(cﬁﬂa%Jrq%Juv%), y5 = Z(Q%""I%—P%_P%)v

1 1 1
v = = (q1p1 + g2p2), y7 = 5(41])2 +q2p1), yg = 5(611171 —q2p2),

2
1
yo = E(CI1‘]2 — p1p2). (3.9)
1
Y10 = Z(Q% — g5 — P+ p3). Y11 = qa, Y12 = q2,
Y13 = p1, Y14 = p2. (3.10)
We have (latin indices now run from 1 to 14):
{ya> Yo} = Cgp Ve, (3.11)

with C¢, the structure constants of the whalg(4,R). Thus, the generators of the Lie
algebraisp(4, R), act as inner derivations A(R*) with

p(Ma)(f) = Ya(f) = {ya, f}. (3.12)

Let us notice that the vector fields are the Hamiltonian vector fields associated to the
functionsy,; therefore, to the linear functiorg, p; i = 1, 2 we associate the vector fields
9/dp;, —d/dq;, respectively. The algebra of quadratic-linear functiong, gfis also closed

with respect to the Moyal product: using the asymptotic development, which becomes exact
when at least one of the two elements of the product is quadratic-linear, it is possible to
show([1] that the product of two such functions is still a function{ of}:

Ya * b = f({yc})- (3.13)
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Moreover, the Moyal bracket ercommutator essentially coincides with the Poisson bracket
(3.11)

[Ya> o]« = i0Cqpye. (3.14)

Thus, the generators of the Lie algelisa(4,R), act as inner derivations My as well,
with

o(Ma)(f) = [Yar fls, [ €My (3.15)

with the Leibniz rule trivially satisfied. Thusgsp(4,R) plays the double role of generat-

ing My and furnishingx-derivations; moreover, this is true in the commutative limit as
well. According to the general procedure outlined in the previous section, once we have
derivations we can define an exterior derivativand construct a differential calculus on
My which is certainly not minimal, but has interesting properties. The idea we want to
pursue, which will be developed in the next section, recalls very much the construction of
a differential calculus on the algebra 8fx N matrices described by Madof€]. There,

a redundant calculus is constructed which is what is heeded to define differential calculi
for different subalgebras of Ma{j. Here, after identifying many interesting subalgebras

of My we will define a differential calculus for each of them, the main difference with
the previous case being that our algebras are realized as operators on infinite dimensional
space.

4. A differential calculus for subalgebras

The algebraM, has interesting subalgebras, which we indicate generically &jth
which share the same commutative limf(R3). Therefore, we regard them as differ-
ent deformations ofF(R3), each of them with its owne-product. Those subalgebras
are polynomially generated by three-dimensional subsets of the quadratic linear func-
tions y, given by (3.10) It can be shown that they are in one to one correspondence
with three-dimensional Lie algebrd8] which they realize both as Poisson algebi&s
and asx algebrag[1]. We briefly review the procedure followed [d] for the conve-
nience of the reader. Consider first the identificatifin= R, whereG* is the dual al-
gebra of some three dimensional Lie algebra. It is known that all three dimensional al-
gebras can be classified and a Poisson realization can be given once the generators of a
Lie algebra are identified with the linear functions on the daa]. In normal form we
have

{x, ¥} = cw + hy, {y, w} = ax, {w, x} = by — hw, (4.1)

wherea, b, ¢, h are real parameters characterizing the algebras and satisfying the condition
ah = 0. Choosing appropriately the parameters we reproduce all the three-dimensional Lie
algebras.

Consider nowR* with the canonical symplectic structure given by the Poisson brackets

{gi, pj} = dij,



G. Marmo et al. / Journal of Geometry and Physics 56 (2006) 611-622 617

associated to the symplectic form:
o =dq1 Adp1+ dg2 A dp.

It is possible to find symplectic realizations: R* — G* = RS, for G* dual to any three-
dimensional Lie algebraj. We expressr through the change of variables that pulls
smooth functions ofiR® back to smooth functions dR*. All that one has to do is to find
three independent functiorfs, f>, f3 onR*whose corresponding canonical brackets have
the required form(4.1). The Poisson mayp is not required to be onto, nor a submersion,
that is to say, to arise from a regular foliationi?.

Severak-maps were constructed[B], under the name of (generalized) classical Jordan—
Schwinger maps. Although many realizations are possible, it turns out that it is always
possible to find a realization for evefyin terms of quadratic-linear functions dif,
namely as a Poisson subalgelfapf the algebrasp(4) given by(3.10)

Less obvious is that the subalgebras are also closed under the ingipceduct. We
have indeed (now Latin indices run from 1 to 3):

yixyi=fW{y}) i yil, =0y yj}- (4.2)
That is, for each set of generators we observe that:

e they generate polynomially a noncommutative subalgebratpf sayBg;

e they close the Lie algebi@ which is a subalgebra afp(4,R), both with respect to the
Moyal bracket and to the Poisson bracket;

e this implies thaty acts on3g in terms of innerx-derivations:

p(Ml)f = [yia f]*’ Mi € g, f e B. (43)

A detailed account of all the subalgebrag®fL0)and related star products is contained in
[1]. We shall only recall that there are essentially two families of subalgebras. Those that we
call of type A in the cited article, which are defined by the property of being the commutant
of a certain function in the ligt3.10), which can be identified as the Casimir function, it
corresponding exactly to the Casimir of the associated Lie algebra. To this class belongs
the example we study below. To the other broad class belong the so called type B algebras,
that is, algebras defined through a Casimir one-form which is not exact. Among them, an
interesting case is theMinkowski algebra which describes a deformed 2 Minkowski
space. The differential calculus that we construct is essentially different for the two cases.
We will see that for type A algebras it is possible to find a frame of one-forms which behave
as in the commutative case, whereas for type B algebras this is not possible.

As a guiding example we shall refer, when needed, to the type A subalgebra generated
by y1, y2, y3 as in Eq.(3.10) As a Poisson algebra this is easily seen to be isomorphic to
su(2). More precisely, it is the commutant of. The induced star product is in that case

2

0 1
€jlmYIOm — ) (L4 yrk)o; — 5V 3k3k} } fi)-

i0
Vi *u@) fi) = {yj -3

(4.4)
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The nonlocality of this product is evident once we observe thaty; = yi2 —(1/8)92
(no sum over repeated indexes). The algebra generators may be represented in terms of
creating and annihilating operators acting on the usual Hilbert space of the two dimen-
sional harmonic oscillator, with basis the cartesian kets»). The sumny + no is con-
stant, it being the eigenvalue of;, which commutes with the whole algebra and rep-
resents the Hamiltonian of the system of oscillators. Therefore, changing basis to the
{Hamiltonian+ angular momentuinbasis, it is possible to see that for each value of the
angular momentum there is a representationug®). The noncommutative algebra of
functions of R3 therefore reduces to a set of finite dimensional algebras, receptacles for
representations ofu(2). Each reduced block is the algebra of a fuzzy spfEd¢in the
oscillator representation. Therefore, the three dimensional space is “foliated” as a set of
fuzzy spheres of increasing radius. We can give a geometric interpretation of the new star
product. Note that, with the exception of the zero orbit, the orbits of the Hamiltonian sys-
tem associated to4 are circles. Functions ofy{, y2, y3) correspond here to functions of
(g1, g2, p1. p2) that remain invariant on those orbits. We are thus identifyRigto the
foliation of R* by those trajectories. The orbits rest on sphereR’inOne circle and only
one passes through each point different from 0. The correspondingShapss? are Hopf
fibrations.

A differential calculus on eacBg is straightforward to define along the same lines of
the previous section. This is the natural reduction of the differential calculuiglpio the
subalgebra®g. In particular the exterior derivative may be defined as

dpf(M;) = [yi, fl« (4.5)
with f y; € Bg, M; € G. If ¢ : Bg — My is the embedding in the Moyal algebra we have
Pdpf) = dmo(f) (4.6)

that is, the differential calculus we have defined on the Moyal algebra induces a differential
calculus on subalgebras. The condition for that to be possible in the noncommutative case
is that the derivations we have chosendy be ‘adapted’ to those @&. Had we chosen as

an algebra of derivations just the translations, which is what gives the minimal differential
calculus on the Moyal algebra, Eg.6)would not have been true. This justifies a posteriori

our choice of such a big calculus fart,.

4.1. Frame of one-forms

For each fixed subalgebBi the set ofldy;} certainly constitutes a system of generators
of 21(Bg) but it is not the most convenient one. Because of noncommutativity we have
indeed f(y;)dy; # dy; f(y:). A better system of generators fa! would be one-forms
which are dual to the derivationgM;). Finding a frame of one-forms for the subalgebras
Bg is not always possible. In facts, there is no solution in all the cases where the algebra
has neither a centre nor a unity (type B algebraflpf but we will show that a solution
exists for the subalgebra considered above.

Once we have found the frame, the construction of the differential calculus follows very
closely the construction of Madoi@] for finite-dimensional (matrix) algebras, although
ours is not finite-dimensional. Differential calculi constructed in this way depend on the
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algebra of derivations one has chosen. We will show at the end of the section how it can be
made independent on derivations and formulated in terms of a one-form which recalls the
Dirac operator of Connes differential calculd4].

For a generic subalgeby the system to be solved is

(@)(M)) € Z(Bg), (4.7)

wherei =1, ... 3, M; are the generators of the Lie algebraalerivations of3g andZ(5)
is the centre of3. Here we have slightly modified the definition of dual frame, because our
algebras have no unity. If the centre is trifdl7) has no solutions. Therefore, the problem
is meaningful only for type A subalgebras.

Let us consider the algebiiy,(2). To the centre belong all functions of + y3 + y2 =
[(g% + ¢5 + p3 + p3)/412. Since a generic one-form may be writterda§ f.dg, it can be
easily seen that there are no solutions which can be expanded in thédygsiherefore,
we write the dual forms as

o = fidg1 + fidgo + fidpy+ fidp2 (4.8)

where f7 are functions inR* and the one-formdg;, dp; are defined by2.4). By means of
Egs.(4.5) and (4.7pecomes then

P 04— i (4.9)
fie j

where f! is a row vectorA is the 3x 4 matrix

: (4.10)
q2 p2 q1

q1 —pP1 —q2

z is an element in the centre aagis the row vector (0...,1;,0,...). Since the algebra
Bsu(2) has a centre, solutions (4.7) are in principle defined up to one-forms in the kernel
of {M1, M>, M3} (‘Casimir one-forms’). Therefore, to solve the problem we enlarge the
algebra of derivations introducing the one associated to the genéfatarhich commutes
with all the others. This is represented by the quadratic fungtian the list(3.10) which
commutes with all the elements of our algebra. We look then for a one-tétnaual to

this auxiliary derivation. If existing, it will be a Casimir one-form. The system to be solved
becomes now

i0
o %A = z6"e, (4.11)
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where, with an obvious extension of the notation, the indexns from 1 to 4 and is the
square matrix:
—P2 42 —p1 —Pp1
—PL —q1 p2 —Pp2
q2  p2 q1 q
q1 —p1 —q92 q2
We need therefore a rightinverse, that is a matri® such thatA « B = z. In general we
are not guaranteed that a matrix with honcommuting entries have an inverse in the sense
specified above; in this case it exists (indeed, it is possible to defirdeterminant, which

is non-zero and central). Notice that in the commutative limitdet 0, that is the matrix
A is degenerate. The solution for the frame of one-forms is finally

(4.12)

) o
ot = C |i(p2dq1 + p1dg2 — g2dp1 — q1dp2) — 5y1ﬁ

o
o? = C |i(qrdqz — q2dqr — p2dp1 + prdpz) — 5})2/3 .
3 . 2
a” = C |i(p1dq1 — p2dq2 — q1dp1 + q2dp2) — §y3/3 , (4.13)
4 _2
ot =C |5vap. (4.14)

where 8 = (g1dq1 + g2dq2 + p1dp1 + p2dp2), 6 is the noncommutativity parameter and

Cis a normalization constant. The one-fofis in the kernel of the algebra of derivations
generated by, M2, M3 (notice however that it is not equal déq? + ¢3 + p? + p3)/2),
therefore, it is ineffective as long as we are concerned with the subalgebra generated by
{1, y2, y3}. The differential calculus which we have induced®») is three-dimensional

and generated by the frame of one-fomsaz, a3. Notice that, up to the one-forg) these

are exactly the dual one-forms of left invariant vector fields on the group marsité(d)

when immersed irR*. In facts, from(4.3), in the commutative limit the three derivations

go into the vector fields

y D< d n d 0 d )
1= P2—TPl— 92— —q1— | >
0q1 g2 ap1 ap2

9 9 9 9
Yo=D|—q—+qr——p2—+p1i— |,

0q1 g2 ap1 ap2
d d 0 d
Yz=D <p1 B 2l +qz) : (4.15)
g1 g2 ap1 ap2

which can be recognized to be a basis of left invariant vector fields on the three-sphere.
These are independent if we only allow numerical coefficients, but not as a module. In the
noncommutative case they are independent because there is no module structure. Therefore,
recalling the geometric interpretation we have given of the representation spac8gfthe



G. Marmo et al. / Journal of Geometry and Physics 56 (2006) 611-622 621

algebra as a foliation into fuzzy spheres, we recover the known result that the tangent space
to noncommutative two-spheres is three-dimensional and not two-dimensional.

As anticipated in the beginning of the section, the existence of a frame simplifies very
much the construction of the differential calculus and makes it possible to model it on the
existing differential calculi for finite-dimensional matrix algebras, thus allowing to recover
many of the properties we have in that case. We will enumerate some of them. Because of
their definition(4.7) fundamental forms verify

fol =o' f (4.16)

Then21(B) is a free module of rank 3. Moreover’ ¢ o/ = —a’ ¢ o' which implies that
forms of degree higher than 3 vanish.
From the same equatigd.7)we derive the Lie derivative:

0= ‘ch<Yj7 O{k> = ((ﬁinj), Otk> + (Yj, Eyi(xk>. (4.17)
The Lie derivative of a derivation being just the Lie bracket we have then
Lya* =dlek. (4.18)

From the definition of exterior derivatig.4)we find an important property of fundamental
forms:

doi = Tei ol o ok (4.19)

o’ = Zejkot o, .
which is the Maurer Cartan equation. The fundamental one-forms being graded-

commutative we can construct the external algebfaso that*(B) = B® A*.
From the fundamental formg we can construct a one-form ia(B):

o= —yi()[i (420)
in terms of which we can reexpress the exterior derivatj/as

df = —[a, f]. (4.21)

Here, there is no explicit reference to derivations. The one—fmgenerates?l(Bsu(z)) as
a bimodule.

The construction oth(Bm(g)) that we have presented in this section may be easily
repeated for the subalgebB,(1,1). The other type A algebras may be obtained as con-
tractions of eitheiB,, (), or By, (1,1), therefore, it should be possible to generate for them a
frame of one-forms through a contraction procedure.

5. Concluding remarks

In this paper we have addressed the problem of defining a differential calculus for non-
commutative algebras possessing a sufficient numberdefrivations. To this purpose we
have reviewed a procedure due to Segal to define a differential calculus for the algebra of
operators of quantum mechanics, where the main ingredient was the existence of a Lie alge-
bra of derivations. Inspired by an existing construction for matrix algebras due to Madore,
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we have found for a relevant case a frame of one-forms and discussed the commutative
limit.
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