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Abstract

We build a differential calculus for subalgebras of the Moyal algebra onR
4 starting from a redun-

dant differential calculus on the Moyal algebra, which is suitable for reduction. In some cases we
find a frame of one-forms which allows to realize the complex of forms as a tensor product of the
noncommutative subalgebras with the external algebraΛ∗.
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1. Introduction

In this paper we address the problem of building a differential calculus on a wide class of
noncommutative algebras introduced in[1]. Those are inequivalent infinite-dimensional∗-
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algebras in one-to-one correspondence with subalgebras of the Moyal algebra onR
4, which

all share the same commutative limit, namely the algebra of functions onR
3. Following

some ideas of Segal contained in[2], where he defines aQuantized Differential Calculus
for the algebra of operators of quantum mechanics, we build a differential calculus based
on the existence of a sufficient number of derivations. The algebras we are interested in
are subalgebras of a bigger one, therefore, in our approach, an important point is how to
infer a differential calculus for subalgebras from a given differential calculus on the big
algebra. The problem is nontrivial in the noncommutative case, and of interest also in more
general situations where we have morphisms between two algebrasA,B, which could be, for
example, the noncommutative analogues of the source and target space of field theories. In
the commutative case, givenM, N, a pair of differentiable manifolds with someφ : M → N,
we know that the exterior derivative on the two spaces is connected by a pull-back:

φ∗(dNf ) = dMφ
∗(f ), (1.1)

where f ∈ F(N) while φ∗(f ) ∈ F(M). But, if the commutative algebras of functions
F(M),F(N) are replaced by the noncommutative algebrasA,B with someψ : B→ A
the relation between the differential calculi on the two algebras is not obvious a priori.
Can we use the differential calculus onA to define a differential calculus onB as in Eq.
(1.1)? As we shall see, this is in general not possible, essentially because derivations in the
noncommutative case are not aA-module, namely we cannot multiply them by elements of
A so that they remain derivations. This will affect the exterior derivatived. In other words,
if we are given a basis of one-forms and an algebra of derivations for the noncommutative
algebra, we may still writed asd = θaXa but it is not true in general that we can perform
a change of bases both for one-forms and derivations such that the same exterior derivative
d is also equal to someαaYa. Indeed, once we have performed the change of basis for the
one-forms (which we can do, the one-forms being aA-module) we cannot rearrange the
derivations in order that they stay derivations, apart from multiplying them by numbers or
elements in the centre ofA. The main point of the paper is therefore the construction of
a differential calculus for subalgebras of the Moyal algebra onR4,Mθ, starting from the
definition of a differential calculus on the Moyal algebra which is suitable to be reduced.

2. Differential calculus for (noncommutative) associative algebras

For an associative algebra a differential calculus can always be defined algebraically,
once a Lie algebra of derivations,L, is given (see for example[2,3]). A one-formα is a
linear map fromL toA. An exterior derivatived is defined as

dα(X, Y ) = ρ(X)(α(Y )) − ρ(Y )(α(X)) − α([X, Y ]). (2.1)

If ρ : L→ Der(A) is a Lie algebra homomorphism, thend2 = d ◦ d is zero. Higher forms
are defined as skew-symmetric multilinear maps fromL to the associative algebraA. Thus,
to define a differential calculus on a noncommutative algebra, we need to choose a set of
derivations, that have to be independent and sufficient, and a representation ofL onA. (A
set of derivations is said to be sufficient when the only elements which are annihilated by
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all of them are in the centre of the algebra.) That is, we needL, ρ such that

ρ(X)(f ∗ g) = (ρ(X)f ) ∗ g+ f ∗ (ρ(X)g), X ∈ L, f, g ∈ A, (2.2)

where∗ is the noncommutative product inA. Assuming such structures are given, the first
step for the construction of a differential calculus is the identification of zero forms with
the algebra itself

Ω0 = A. (2.3)

Then the exterior derivative is implicitly defined by

df (X) = ρ(X)f. (2.4)

It automatically verifies the Leibnitz rule becauseρ(X), X ∈ L are∗-derivations

d(f ∗ g)(X) = (ρ(X)f ) ∗ g+ f ∗ (ρ(X)g), (2.5)

moreover,

d2 = 0, (2.6)

because the∗-derivationsρ(X), X ∈ L close a Lie algebra. The second step consists in
definingΩ1 as a leftA module that is

gd(X) = g ∗ (ρ(X)f ). (2.7)

Analogously, we can define a rightAmodule. Because of noncommutativity they are not the
same, but we can always express one in terms of the other. Thus, we consider left modules
from now on. To constructΩ2 we use(2.1) and (2.6). We have

df � dg(Xµ,Xν) = df (Xµ) ∗ df (Xν) − df (Xν) ∗ df (Xµ), (2.8)

where we have indicated with� the product of forms. Because of noncommutativity:

df � dg �= −dg � df. (2.9)

In a similar way toΩ1,Ω2 is defined as a leftAmodule with respect to the∗ multiplication:

fdg � dh(Xµ,Xν) = f ∗ dg(Xµ) ∗ dh(Xν) − f ∗ dg(Xν) ∗ dh(Xµ). (2.10)

HigherΩp are built along the lines of the commutative case.

3. A differential calculus for the Moyal algebra

The simplest and mostly studied noncommutative algebra is the Moyal algebra. This
is a deformation of the algebra of functions onR2n, (F(R2n), ·) into the noncommutative
algebra (M, ∗θ) where∗θ is the Moyal product[4,5] andθ the noncommutativity parameter.
The zero-th order inθ yields back the ordinary commutative product, while the first order
is the Poisson bracket which we assume for simplicity the canonical one. Different (nonde-
generate) Moyal products onR4 are in principle associated with an invertible antisymmetric
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matrixΘij which, with a change of coordinates, can be expressed in the canonical form:

Θ =




0 0 −θ1 0

0 0 0 −θ2

θ1 0 0 0

0 θ2 0 0


 (3.1)

with ±θi the eigenvalues ofΘ. A simple rescaling can then equateθ1 = θ2 = θ. In this
setting, the Moyal productf 
θ g of two Schwartz functionsf, g onR4 is defined by

f ∗θ g(u) :=
∫
R4

∫
R4
Lθ(u, v,w) f (v)g(w) dµθ(v) dµθ(w), (3.2)

whereu := (q, p); θ is a positive real parameter;dµθ(v) := (πθ)−4 dµ(v). The integral
kernelLθ is given by

Lθ(u, v,w) := exp

(
2i

θ
(uJv+ vJw+ wJu)

)
, (3.3)

whereJ denotes the antisymmetric matrix:

J :=
(

0 12

−12 0

)
(3.4)

with 12 the 2× 2 identity matrix. What is properly defined as the Moyal algebra is
Mθ :=ML(R4

θ) ∩MR(R4
θ) whereML(R4

θ), the left multiplier algebra, is defined as the
subspace of tempered distributions that give rise to Schwartz functions when left multiplied
by Schwartz functions; the right multiplier algebraMR(R4

θ) is analogously defined. For
more details we refer to the appendix in[1] and references therein. In the present article we
shall think ofMθ as the algebra of∗-polynomial functions inqi, pi, properly completed.
Its commutative limit,F(R4), is the commutative multiplier algebraOM(R4), the algebra of
smooth functions of polynomial growth onR4 in all derivatives[6]. To define a differential
calculus in the constructive way described in the previous section we need derivations. The
Mθ are normal spaces of distributions, and all their derivations are inner. Therefore, we
turn our attention to groups of automorphisms ofMθ. A relevant one is the inhomogeneous
symplectic group ISp(4,R), constituted by translations and real symplectic transformations
ofR4.1 As we will see below in more detail, it induces derivations both for the commutative
algebraF(R4) and the Moyal algebraMθ. In facts its Lie algebra is the maximal algebra
of derivations with this property. Moreover, although it is not minimal (the subalgebra of
translations would suffice) it generates the whole algebra of polynomial functions, once we
represent its generators as quadratic-linear functions inR

4.
The group Sp(4,R) consists of elementsg for whichgtJg = J ; this implies for the Lie

algebra generators thatMtJ + JM = 0, with

[Ma,Mb] = CcabMc (3.5)

1 Note however that smaller Moyal algebras can be chosen, such that the inhomogeneous symplectic algebra
acts as outer derivations on them[6]. The choice of such big algebras in the present paper is motivated by the fact
that they contain all polynomials.
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andCcab the structure constants of the symplectic algebra. The Lie algebra is realized in
terms of vector fields onR4 by

Ya = −Mµ
aνu

ν ∂

∂uµ
. (3.6)

To the symmetric matricesBa = −JMa it is associated a set of quadratic functions onR4:

ya = 1

2
utBau. (3.7)

They define a realization of the symplectic algebra as a Poisson algebra with respect to the
canonical Poisson bracket{qi, pj} = δij:

{ya, yb} = Ccabyc. (3.8)

The inhomogeneous sector of the Lie algebra ofisp(4,R) is represented by linear functions.
Therefore, the whole inhomogeneous symplectic algebra,isp(4,R), may be realized as a
Poisson algebra onR4 with generators a set of quadratic-linear functions ofq, p. A possible
choice for the generators is

y1 = 1

2
(q1q2 + p1p2), y2 = 1

2
(q1p2 − q2p1), y3 = 1

4
(q2

1 + p2
1 − q2

2 − p2
2),

y4 = 1

4
(q2

1 + p2
1 + q2

2 + p2
2), y5 = 1

4
(q2

1 + q2
2 − p2

1 − p2
2),

y6 = 1

2
(q1p1 + q2p2), y7 = 1

2
(q1p2 + q2p1), y8 = 1

2
(q1p1 − q2p2),

y9 = 1

2
(q1q2 − p1p2), (3.9)

y10 = 1

4
(q2

1 − q2
2 − p2

1 + p2
2), y11 = q1, y12 = q2,

y13 = p1, y14 = p2. (3.10)

We have (latin indices now run from 1 to 14):

{ya, yb} = Ccabyc, (3.11)

with Ccab the structure constants of the wholeisp(4,R). Thus, the generators of the Lie
algebraisp(4,R), act as inner derivations inF(R4) with

ρ(Ma)(f ) = Ya(f ) = {ya, f }. (3.12)

Let us notice that the vector fieldsYa are the Hamiltonian vector fields associated to the
functionsya; therefore, to the linear functionsqi, pi i = 1,2 we associate the vector fields
∂/∂pi,−∂/∂qi, respectively. The algebra of quadratic-linear functions ofq, p is also closed
with respect to the Moyal product: using the asymptotic development, which becomes exact
when at least one of the two elements of the product is quadratic-linear, it is possible to
show[1] that the product of two such functions is still a function of{ya}:

ya ∗ yb = f ({yc}). (3.13)
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Moreover, the Moyal bracket or∗-commutator essentially coincides with the Poisson bracket
(3.11):

[ya, yb]∗ = iθCcabyc. (3.14)

Thus, the generators of the Lie algebraisp(4,R), act as inner derivations inMθ as well,
with

ρ(Ma)(f ) = [ya, f ]∗, f ∈Mθ (3.15)

with the Leibniz rule trivially satisfied. Thus,isp(4,R) plays the double role of generat-
ingMθ and furnishing∗-derivations; moreover, this is true in the commutative limit as
well. According to the general procedure outlined in the previous section, once we have
derivations we can define an exterior derivatived and construct a differential calculus on
Mθ which is certainly not minimal, but has interesting properties. The idea we want to
pursue, which will be developed in the next section, recalls very much the construction of
a differential calculus on the algebra ofN ×N matrices described by Madore[7]. There,
a redundant calculus is constructed which is what is needed to define differential calculi
for different subalgebras of Mat(N). Here, after identifying many interesting subalgebras
of Mθ we will define a differential calculus for each of them, the main difference with
the previous case being that our algebras are realized as operators on infinite dimensional
space.

4. A differential calculus for subalgebras

The algebraMθ has interesting subalgebras, which we indicate generically withB,
which share the same commutative limit,F(R3). Therefore, we regard them as differ-
ent deformations ofF(R3), each of them with its own∗-product. Those subalgebras
are polynomially generated by three-dimensional subsets of the quadratic linear func-
tions yµ given by (3.10). It can be shown that they are in one to one correspondence
with three-dimensional Lie algebras[8] which they realize both as Poisson algebras[8]
and as∗ algebras[1]. We briefly review the procedure followed in[1] for the conve-
nience of the reader. Consider first the identificationG∗ ≡ R3, whereG∗ is the dual al-
gebra of some three dimensional Lie algebra. It is known that all three dimensional al-
gebras can be classified and a Poisson realization can be given once the generators of a
Lie algebra are identified with the linear functions on the dual[9,8]. In normal form we
have

{x, y} = cw+ hy, {y,w} = ax, {w, x} = by − hw, (4.1)

wherea, b, c, h are real parameters characterizing the algebras and satisfying the condition
ah = 0. Choosing appropriately the parameters we reproduce all the three-dimensional Lie
algebras.

Consider nowR4 with the canonical symplectic structure given by the Poisson brackets

{qi, pj} = δij,
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associated to the symplectic form:

ω = dq1 ∧ dp1 + dq2 ∧ dp2.

It is possible to find symplectic realizationsπ : R4 → G∗ ≡ R3, for G∗ dual to any three-
dimensional Lie algebra,G. We expressπ through the change of variablesπ∗ that pulls
smooth functions onR3 back to smooth functions onR4. All that one has to do is to find
three independent functionsf1, f2, f3 onR4 whose corresponding canonical brackets have
the required form(4.1). The Poisson mapπ is not required to be onto, nor a submersion,
that is to say, to arise from a regular foliation ofR3.

Severalπ-maps were constructed in[8], under the name of (generalized) classical Jordan–
Schwinger maps. Although many realizations are possible, it turns out that it is always
possible to find a realization for everyG in terms of quadratic-linear functions onR4,
namely as a Poisson subalgebra,B, of the algebraisp(4) given by(3.10).

Less obvious is that the subalgebras are also closed under the induced∗-product. We
have indeed (now Latin indices run from 1 to 3):

yi ∗ yj = f ({yi}) [yi, yj]∗ = iθ{yi, yj}. (4.2)

That is, for each set of generators we observe that:

• they generate polynomially a noncommutative subalgebra ofMθ, sayBG;
• they close the Lie algebraG, which is a subalgebra ofisp(4,R), both with respect to the

Moyal bracket and to the Poisson bracket;
• this implies thatG acts onBG in terms of inner∗-derivations:

ρ(Mi)f = [yi, f ]∗, Mi ∈ G, f ∈ B. (4.3)

A detailed account of all the subalgebras of(3.10)and related star products is contained in
[1]. We shall only recall that there are essentially two families of subalgebras. Those that we
call of type A in the cited article, which are defined by the property of being the commutant
of a certain function in the list(3.10), which can be identified as the Casimir function, it
corresponding exactly to the Casimir of the associated Lie algebra. To this class belongs
the example we study below. To the other broad class belong the so called type B algebras,
that is, algebras defined through a Casimir one-form which is not exact. Among them, an
interesting case is thek-Minkowski algebra which describes a deformed 2+ 1 Minkowski
space. The differential calculus that we construct is essentially different for the two cases.
We will see that for type A algebras it is possible to find a frame of one-forms which behave
as in the commutative case, whereas for type B algebras this is not possible.

As a guiding example we shall refer, when needed, to the type A subalgebra generated
by y1, y2, y3 as in Eq.(3.10). As a Poisson algebra this is easily seen to be isomorphic to
su(2). More precisely, it is the commutant ofy4. The induced star product is in that case

yj ∗su(2) f (yi) =
{
yj − iθ

2
εjlmyl∂m − θ2

8

[
(1 + yk∂k)∂j − 1

2
yj ∂k∂k

]}
f (yi).

(4.4)



618 G. Marmo et al. / Journal of Geometry and Physics 56 (2006) 611–622

The nonlocality of this product is evident once we observe thatyi ∗ yi = y2
i − (1/8)θ2

(no sum over repeated indexes). The algebra generators may be represented in terms of
creating and annihilating operators acting on the usual Hilbert space of the two dimen-
sional harmonic oscillator, with basis the cartesian kets|n1n2〉. The sumn1 + n2 is con-
stant, it being the eigenvalue ofy4, which commutes with the whole algebra and rep-
resents the Hamiltonian of the system of oscillators. Therefore, changing basis to the
{Hamiltonian+ angular momentum} basis, it is possible to see that for each value of the
angular momentum there is a representation ofsu(2). The noncommutative algebra of
functions ofR3 therefore reduces to a set of finite dimensional algebras, receptacles for
representations ofsu(2). Each reduced block is the algebra of a fuzzy sphere[10] in the
oscillator representation. Therefore, the three dimensional space is “foliated” as a set of
fuzzy spheres of increasing radius. We can give a geometric interpretation of the new star
product. Note that, with the exception of the zero orbit, the orbits of the Hamiltonian sys-
tem associated toy4 are circles. Functions of (y1, y2, y3) correspond here to functions of
(q1, q2, p1, p2) that remain invariant on those orbits. We are thus identifyingR3 to the
foliation ofR4 by those trajectories. The orbits rest on spheres inR4. One circle and only
one passes through each point different from 0. The corresponding mapsS3 → S2 are Hopf
fibrations.

A differential calculus on eachBG is straightforward to define along the same lines of
the previous section. This is the natural reduction of the differential calculus onMθ to the
subalgebrasBG. In particular the exterior derivative may be defined as

dBf (Mi) = [yi, f ]∗ (4.5)

with f, yi ∈ BG,Mi ∈ G. If φ : BG →Mθ is the embedding in the Moyal algebra we have

φ(dBf ) = dMφ(f ) (4.6)

that is, the differential calculus we have defined on the Moyal algebra induces a differential
calculus on subalgebras. The condition for that to be possible in the noncommutative case
is that the derivations we have chosen forMθ be ‘adapted’ to those ofB. Had we chosen as
an algebra of derivations just the translations, which is what gives the minimal differential
calculus on the Moyal algebra, Eq.(4.6)would not have been true. This justifies a posteriori
our choice of such a big calculus forMθ.

4.1. Frame of one-forms

For each fixed subalgebraBG the set of{dyi} certainly constitutes a system of generators
of Ω1(BG) but it is not the most convenient one. Because of noncommutativity we have
indeedf (yi)dyj �= dyjf (yi). A better system of generators forΩ1 would be one-forms
which are dual to the derivationsρ(Mi). Finding a frame of one-forms for the subalgebras
BG is not always possible. In facts, there is no solution in all the cases where the algebra
has neither a centre nor a unity (type B algebras of[1]), but we will show that a solution
exists for the subalgebra considered above.

Once we have found the frame, the construction of the differential calculus follows very
closely the construction of Madore[7] for finite-dimensional (matrix) algebras, although
ours is not finite-dimensional. Differential calculi constructed in this way depend on the



G. Marmo et al. / Journal of Geometry and Physics 56 (2006) 611–622 619

algebra of derivations one has chosen. We will show at the end of the section how it can be
made independent on derivations and formulated in terms of a one-form which recalls the
Dirac operator of Connes differential calculus[11].

For a generic subalgebraBG the system to be solved is

(αi)(Mj) ∈ Z(BG), (4.7)

wherei = 1, . . .3,Mi are the generators of the Lie algebra of∗-derivations ofBG andZ(B)
is the centre ofB. Here we have slightly modified the definition of dual frame, because our
algebras have no unity. If the centre is trivial(4.7)has no solutions. Therefore, the problem
is meaningful only for type A subalgebras.

Let us consider the algebraBsu(2). To the centre belong all functions ofy2
1 + y2

2 + y2
3 =

[(q2
1 + q2

2 + p2
1 + p2

2)/4]2. Since a generic one-form may be written as
∑
a fadga it can be

easily seen that there are no solutions which can be expanded in the basis{dyi}. Therefore,
we write the dual forms as

αi = f i1dq1 + f i2dq2 + f i3dp1 + f i4dp2 (4.8)

wheref i are functions inR4 and the one-formsdqi, dpi are defined by(2.4). By means of
Eqs.(4.5) and (4.7)becomes then

f i ∗ iθ
2
A = zδijej (4.9)

wheref i is a row vector,A is the 3× 4 matrix




−p2 q2 −p1

−p1 −q1 p2

q2 p2 q1

q1 −p1 −q2


 , (4.10)

z is an element in the centre andej is the row vector (0, . . . ,1j,0, . . .). Since the algebra
Bsu(2) has a centre, solutions to(4.7)are in principle defined up to one-forms in the kernel
of {M1,M2,M3} (‘Casimir one-forms’). Therefore, to solve the problem we enlarge the
algebra of derivations introducing the one associated to the generatorM4, which commutes
with all the others. This is represented by the quadratic functiony4 in the list(3.10), which
commutes with all the elements of our algebra. We look then for a one-form,α4, dual to
this auxiliary derivation. If existing, it will be a Casimir one-form. The system to be solved
becomes now

fµ ∗ iθ
2
A = zδµνeν (4.11)
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where, with an obvious extension of the notation, the indexµ runs from 1 to 4 andA is the
square matrix:


−p2 q2 −p1 −p1

−p1 −q1 p2 −p2

q2 p2 q1 q1

q1 −p1 −q2 q2


 . (4.12)

We need therefore a right∗-inverse, that is a matrixB such thatA ∗ B = z. In general we
are not guaranteed that a matrix with noncommuting entries have an inverse in the sense
specified above; in this case it exists (indeed, it is possible to define a∗-determinant, which
is non-zero and central). Notice that in the commutative limit detA = 0, that is the matrix
A is degenerate. The solution for the frame of one-forms is finally

α1 = C

[
i(p2dq1 + p1dq2 − q2dp1 − q1dp2) − 2

θ
y1β

]
,

α2 = C

[
i(q1dq2 − q2dq1 − p2dp1 + p1dp2) − 2

θ
y2β

]
,

α3 = C

[
i(p1dq1 − p2dq2 − q1dp1 + q2dp2) − 2

θ
y3β

]
, (4.13)

α4 = C

[
2

θ
y4β

]
, (4.14)

whereβ = (q1dq1 + q2dq2 + p1dp1 + p2dp2), θ is the noncommutativity parameter and
C is a normalization constant. The one-formβ is in the kernel of the algebra of derivations
generated byM1,M2,M3 (notice however that it is not equal tod(q2

1 + q2
2 + p2

1 + p2
2)/2),

therefore, it is ineffective as long as we are concerned with the subalgebra generated by
{y1, y2, y3}. The differential calculus which we have induced onBsu(2) is three-dimensional
and generated by the frame of one-formsα1, α2, α3. Notice that, up to the one-formβ, these
are exactly the dual one-forms of left invariant vector fields on the group manifoldSU(2)
when immersed inR4. In facts, from(4.3), in the commutative limit the three derivations
go into the vector fields

Y1 = D

(
p2

∂

∂q1
+ p1

∂

∂q2
− q2

∂

∂p1
− q1

∂

∂p2

)
,

Y2 = D

(
−q2

∂

∂q1
+ q1

∂

∂q2
− p2

∂

∂p1
+ p1

∂

∂p2

)
,

Y3 = D

(
p1

∂

∂q1
− p2

∂

∂q2
− q1

∂

∂p1
+ q2

∂

∂p2

)
, (4.15)

which can be recognized to be a basis of left invariant vector fields on the three-sphere.
These are independent if we only allow numerical coefficients, but not as a module. In the
noncommutative case they are independent because there is no module structure. Therefore,
recalling the geometric interpretation we have given of the representation space of theBsu(2)
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algebra as a foliation into fuzzy spheres, we recover the known result that the tangent space
to noncommutative two-spheres is three-dimensional and not two-dimensional.

As anticipated in the beginning of the section, the existence of a frame simplifies very
much the construction of the differential calculus and makes it possible to model it on the
existing differential calculi for finite-dimensional matrix algebras, thus allowing to recover
many of the properties we have in that case. We will enumerate some of them. Because of
their definition(4.7) fundamental forms verify

fαi = αif. (4.16)

ThenΩ1(B) is a free module of rank 3. Moreover,αi � αj = −αj � αi which implies that
forms of degree higher than 3 vanish.

From the same equation(4.7)we derive the Lie derivative:

0 = LYi〈Yj, αk〉 = 〈(LYiYj), αk〉 + 〈Yj,LYiαk〉. (4.17)

The Lie derivative of a derivation being just the Lie bracket we have then

LYiα
k = αlεkli. (4.18)

From the definition of exterior derivative(2.4)we find an important property of fundamental
forms:

dαi = 1

2
εijkα

j � αk, (4.19)

which is the Maurer Cartan equation. The fundamental one-forms being graded-
commutative we can construct the external algebraΛ∗, so that�∗(B) = B⊗Λ∗.

From the fundamental formsαi we can construct a one-form inΩ1(B):

α = −yiαi (4.20)

in terms of which we can reexpress the exterior derivativedf as

df = −[α, f ]. (4.21)

Here, there is no explicit reference to derivations. The one-formα generatesΩ1(Bsu(2)) as
a bimodule.

The construction ofΩ1(Bsu(2)) that we have presented in this section may be easily
repeated for the subalgebraBsu(1,1). The other type A algebras may be obtained as con-
tractions of eitherBsu(2), orBsu(1,1), therefore, it should be possible to generate for them a
frame of one-forms through a contraction procedure.

5. Concluding remarks

In this paper we have addressed the problem of defining a differential calculus for non-
commutative algebras possessing a sufficient number of∗-derivations. To this purpose we
have reviewed a procedure due to Segal to define a differential calculus for the algebra of
operators of quantum mechanics, where the main ingredient was the existence of a Lie alge-
bra of derivations. Inspired by an existing construction for matrix algebras due to Madore,
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we have found for a relevant case a frame of one-forms and discussed the commutative
limit.
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